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A pseudo-spectral approximation for the Navier—Stokes equations in the 2D case
is presented using a new splitting technique based on the Uzawa algorithm. The
system is decoupled into Helmholtz equations for the velocity and an equation with
the pseudo-Laplacian for the pressure. Staggered grids with Gauss— and Gauss—
Lobatto nodes are employed. Preconditioning with finite differences is considered.
By extrapolation, a stable second-order method in time for the velocity and at least
a first-order method for the pressure can be achievedoo1 Academic press

1. INTRODUCTION

We present a pseudo-spectral approximation for the Navier—Stokes equations. For
plicity, we first consider the unsteady Stokes equation which is discretized by a Cheby:
collocation method. This means that the solution is approximated by global Chebys
polynomials (see, e.g., Canutbal. [7]).

Our approach to solve the spectral systemis to use a global iterative decoupling proce
This procedure is an extension of the classical Uzawa algorithm (Aetaal. [1]) which
was already extensively used in the finite element context (see Bristedy6], Girault
and Raviart [10], Brezzi and Fortin [5], Bask& and Suri [2], and Temam [19]). In the
context of spectral element methods, this approach was also chosen by &taddi 5]
and Rgnquist [18].

Finally, we present a decoupling where we reduce the problem to the solution c
Helmholtz equation and another equation with the pseudo-Laplacian for the pressure
avoid spurious modes we introduce two grids by taking the Gauss nodes for the pres
and the standard Chebyshev Gauss—Lobatto nodes for the velocity. Thereby the press
approximated by polynomials of one degree less than those used for the velocity. A sin
ideawas proposed by Bernardi and Maday [3] where three grids are used, one for the pre
and two for the velocity, i.e., one for each velocity component. Their technique based or
use of Legendre polynomials, but without any splitting technique. Moreover, no numers
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132 HASCHKE AND HEINRICHS

results are presented in [3]. Another method without the use of staggered grids is consic
by Heinrichs [12], where the pressure is approximated by polynomials of two degree |
than for the velocity. We show that our new approach has better preconditioning propel
than the method by Heinrichs described above. In [13] another related method is prop
is where both velocity and pressure are approximated by polynomials ofidrdéowever,
this leads to four spurious modes. A large number of related methods using staggered
can be found in the recent literature. The main difference between these methods an
approach presented here is that we combine staggered grids with an appropriate spl
technique. This has obvious advantages for the implementation and computational co

We also prove that the eigenvalues of the spectral pseudo—Laplacian are real and ne
(except of one eigenvalue which is zero and belongs to the constant mode). This implies
we have no spurious modes. Since the spectral pseudo—-Laplacian is very ill-conditione
present suitable finite difference (FD) preconditioners for an effective iterative solver.

We transfer our splitting for the unsteady Stokes equation to the Navier—Stokes equat
where we have a closer look at the convective term. For the time discretization a high-o
backward differentiation scheme for the intermediate velocity is combined with a high-or
extrapolant for the pressure. It is numerically shown that a stable second-order methc
time for the velocity and at least first order for the pressure can be achieved.

2. TIME SPLITTING SCHEME

We consider the unsteady Stokes equations

3 .
Biltj VU 4+Vp=f inQ=(-1 12 2.1)
Vou=0 inQ, 2.2)

u=0 ona, (2.3)

whereu = (uy, u,)! denotes the velocity anp the pressure. The functioh: 2 — R? is
a given force. We impose the average pressure to be zero; i.e.,

/ pdx=0,
Q

as the pressure is only determined up to a constant.
The BDF (see [8]) time discretization of Egs. (2.1)—(2.3) leads to the scheme

Lgkun+1 . V2un-&-1 + Vpn+1 = "1 in Q, (2_4)
V.utl=0 ingQ, (2.5)
u™l=0 ond, (2.6)

where At denotes the step size tnand the indexh + 1 indicates that the functions are
evaluated at the time stép,1 = (n+ 1) - At. Lﬂk represents the backward differentation
scheme for the approximation §ff andk is the order of the schemkf', can be written as

k
1
L?,kun+l — E 2 :‘Bmun+1—m.
m=0



STAGGERED GRIDS FOR NAVIER-STOKES 133

Fork = 1 the standard backward Euler scheme is givefigay: 1, 81 = —1 and we obtain

untl — yn
At

n ,n+1 __
Lt’lu =

This algorithm is of first order in time.
A second-order scheme can be obtaineckfer 2 usingfo = 3, 1 = —2, o = 3

3 n+1 _ n 1, n-1
Lpumt = U 2u" 45U '
t At

Finally, a method of third order fdc = 3 is given applying3, = %1, B1=-3, 8= g and
Bs=—3

To minimize the computational cost we introduce the following splitting scheme whi
was proposed by Madagt al.[16]. We obtain

L?kﬁn-&-l V2 n+l+vﬁn+1 1 inQ, 2.7)
i"'=0 onaQ, (2.8)
and
ynt+l _ gntl
fo——— + V(- =0 ing, @9)
vV.utlt=0 ingQ, (2.10)
u™l.y =0 onaQ. (2.12)

Here,v denotes the outer unitnormél;** an intermediate velocity, arﬁzi1+1 an extrapolant
for the pressure obtained from the previbdusne steps.

Obviously the order of convergence depends on the d&raghe backward differentiation
scheme and on the ordeof the extrapolation where

-1
= Z ymp" ",
m=0

the valuesy,, m=0,...,1 — 1, being suitable coeffcients. Fbe= 1 we use especially
yo = 1; forl =2 we haveyy = 2,9, = —1.
Let

k
e+l enyl 1 +1— +1
fr=f" _EE BrU M — vt

Equations (2.7) and (2.8) are equivalent to the following Helmholtz problem:

1 ~
<—v2 + ﬂoAtl)a“*l =" inq, (2.12)

i"'=0 onaiQ. (2.13)
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The system (2.9)—(2.11) corresponds to

1
ﬁOEurH—l + vpn-‘rl — gn+1 in Q, (214)
vV.u"tl=0 ingQ, (2.15)
u™l.y =0 onaQ, (2.16)

whereg™?! = gL + v pf'**. From now on we will consider (2.14)—(2.16).

3. PSEUDO-SPECTRAL DISCRETIZATION

To give a pseudo-spectral discretization of the Stokes systems we have to define ¢
tral operators for the velocity and the pressure. This is done in the one-dimensional
first. In the two-dimensional case we get the corresponding operators by tensor pro
representation.

For N € N let Py be the space of polynomials of degre&l, while Pﬂ, is the space
of polynomials in Ry which in addition fulfill the homogeneous Dirichlet boundary con-
ditions. We approximate by polynomials in I%, and p by polynomials in R _;. We
apply staggered grids where the velocity is defined at the Gauss—Lobatto(madg$ =
(cosiﬁ”,cos%),i,j =0,..., N, while the pressure is evaluated at the Gauss nod
(zi, wj) = (cos@ LT cos@_D™) i j=1,..., N. We only consider eveN. For odd
N a similar treatment is possible.

Here we use the pseudo-spectral Chebyshev discretization. The corresponding sp
derivative operator for the velocity components can be found in [17].

After eliminating the boundary conditions we obtain

u'(xj) = (Iﬁﬁu)j, i=0,...,N,

whereD? € RN*N-1 x; = cosI™, j = 0,..., N. Now we have to interpolate between
the Gauss—Lobatto and the Gauss node$. & RN-N*1 denotes the interpolation matrix
we derive

u'(zj) = (Tf)gu)j, j=1,...,N.

The operatorD® = TDS e RNN-Irepresents the first derivative operator. The secor
derivative is considered at the Gauss—Lobatto nodes and reads

i ~ 0 .
u'(x) = ((Df)u);, i=1....N-1,
where(D2)° e RN-1N-1,
Now let us define the derivative operator for the pressure. Note that one has to interpc
between the Gauss and the Gauss—Lobatto nodes. We get
Pxp) =@DOp)j, j=L....,N—-1,
whereD € RN-2N is given by

D = Tp,DpTp,.
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Ty, € RNV interpolates into R_1, D, € RN'N performs the differentiation in the coef-
ficient space, andp, € RN-1N transforms back in the physical space. So we transfor
directly onto the Gauss—Lobatto nodes.

Dp = (di )i j=1...n is explicitly defined as

o
o, else

(2 i=1
G = 1, else

For the two-dimensional space we calculate the derivative operators by the tensor prc
representation. We can introduce the partial differential operators for the velocity as

2= j=i+1i+3...,N—-1
d;=

0 0
—:D%=D"®1, —:D%=1g D",
ax = ® ay Y ®
? o 20 2 o 20
W.Dxxz(Du) I, aT/Z'DW=|®(DU)’
82 82 0 0 0
ﬁ"i_a_yz'DA:(Dxx"_Dyy)’

wherel € RM'N denotes the identity matrix. This induce®g, DJ e RN*(N-UN,
For the pressure we work analogously to write

ad ad
—:Dy=D®Il, —:Dy=1®D,
ax - X ® ay Y ®
whereDy, Dy € RN-D-N.N?
Note that the transform from Gauss—Lobatto to Gauss nodes (and vice-versa) is done
in one variable. Therefore, we need a new definition for the pseudo-spectral discretiza
For the velocity it is given by

d a
— D%, =D®T, — :D%,=T®D"
axg = *C ® dye = V° ®
and for the pressure by

9 Rl
WGL :DxeL=D® (Tpl : sz)» % :DyeL= (Tpl ) TPZ) ®D.

The indexG indicates that we transform onto the Gauss nodes (analog@lsly,
Now we are able to provide the pseudo-spectral discretization for the Stokes prob
First we consider (2.4)—(2.6), which gives

1 il
<— DY + ﬂoAt|>u2+l + DyeLp™t = 1™ inQ, (3.1)

1 R
(- DS + ,BOEI>U’2‘+1 + Dyep™™ = 3 inQ, (3.2)
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DY Uit + DY cus™ =0 inQ, (3.3)
ultt =ul =0 onaQ, (3.4)

where
. 1 Zk
fret = - mzlﬁmu{‘“*m (=12.

Since we would like to use the operator splitting we have to solve a Helmholtz problem
the intermediate velocity components, which reads

1 ~ .
(‘D‘iw@')ﬁ?“ =i ine, (3:5)
Ml =0 oniQ, i=12 (3.6)
and

U N+l Nl
ﬁQEU1 + Dyx.eLP =0 In €2, (3.7)

1 n+1 n+1 n+1
'BOEU +Dyelp =0 inQ, (3.8)
DY gul*t + DS gui™t =0 inQ, (3.9)
Ut =ult =0 onaq. (3.10)

By applying the divergence to the first two equations and further using the divergence-
condition (Uzawa decoupling) we finally obtain an equation with the pseudo-Laplacian
the pressure:

(DS,G Dy.cL + DS,G Dy,GL) phtt = Gg{‘“ + DO GgQ“. (3.11)
The operatoB € RNN* with

B = Dy ¢DxoL + DY cDycL
= DyDyx + DyDy

is called thepseudo-Laplaciaor energy

4. PROPERTIES OF THE SPECTRAL PSEUDO-LAPLACIAN
In this section we consider the pseudo-Laplacian
B=D{Dx+D)Dy=A® | +1®A
First, we consider the one-dimensional pseudo—-Laplacian

A= DD.
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For an analysis oA we introduce a somewhat different representatioof et p be a
polynomial in Ry_3. Applying Ato pis equivalent to first applyin® to p and thenD° to
Dp. We obtain

p/(xj):(Dp)]’ J :l ----- N_l,

where we considep as a vector in .
Before applyingD® to Dp we have to magp’ onto a polynomialp; € P9, which is
defined by

PoX) =P (x), j=1,....,N-1
Obviously, p, can explicitly be written as
Po = P’ + T\ + BXTY, (4.1)

whereTy denotes thélth Chebyshev polynomial. The coefficieatsindg are determined
such thatpy(1) = pp(—1) = 0;i.e.,

o« = 2N2(p< 1) - '),

B = 2Nz(p( D + p'(L).

Applying D to Dp is equivalent to taking the first derivative pf; i.e.,
Py =P’ +aTy + BT 4.2)
We derive
(Apj = p'(z) +0€T|<1/(Zj) + B(XTY) (z))

=p'(Z) + 55 (P'D - pP)T(E) - (P=D+p' D) - XTY'(z)

2N2 2N2

1
=P'@)+ 5@ D (@) - A-2) - Ti@)
1
oz P ON@) - L +2) + T (@),

wherez; are the Gauss nodes fpr=1, ..., N.
Knowing that

T (z) = (=1} - N

and

TN@) = (DN
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it follows for (Ap)j, with j =1,..., N,

=111 -2z
-z Tt

In order to represenf in matrix notation, we introduce two diagonal matricBs,
D+ (S RN'N:

DI +2)

e i 1o
(Ap)] =p (ZJ)+ 2N p( 1) (1_212)3/2

(4.3)

. _ _ (— 1)”1(1—2) .
_:d|ag(dlyj)]:]_ _____ N de] —3/2, J :1,...,N,
(1-7)
, (DI A+z) .
D, =diag(d;’)j-1..n: df; = ——— a7 i=L1L....N
(1-17)

Furthermore, we define two matricBs, P_ € RN-N which represenp’(1), p’(—1). To be
more precise

wheree; = (1,1,..., D% e. = (1, -1,...,1, —1)! € RN. Obviously P, and P_ have
rank 1. We obtain the following representation:

A=D?+D_P_+D,P,. (4.4)

Our aim is to prove that the eigenvalues/A#tre real.
Let p € Pyn_1 be an eigenfunction o with respect to the eigenvalue We have

P’ +aT + B(XTY) —Ap=0. (4.5)

First, we consider the case= 0. It is easy to see that = const # 0 is an eigenfuction.
Furthermore, notice thgt” € Py_3z buta T + B(XT.)’ € Py_1. Thisimpliese = g =0,
inducing

p(-1)=p @) =0.

This implies that all eigenfunctions associated with- 0 are constant.
Inwhat follows we consider the case# 0, p # const Let usintroduce; = pi(x, A) €
Pn_2, P2 = p2(X, A) € Pn_1 satisfying

ApL—pi =Ty,
)‘p2 - pz (XTN)

We definep; and p, by

= 3%
_ —k-1 "
p1= g A 3X2k TNs
© L, 0%
p2 = Z A m(XTN)
k=0



STAGGERED GRIDS FOR NAVIER-STOKES 139
(see [11]), andp is given by
P = api+ BP2.
Herea, B have to be chosen such that

(PLL )+ T@) o+ (po(1, )+ Ty(D) - =0,
(P1(=1, 1) + T\ (=1) - + (pa(—1, 1) = T((=1) - B =0.

This system of equations has a nontrivial solution if and only if the determinant vanist
ie.,

[(p(L, 2) + TR (= Po(—=1, 1) + T (=1)] — [(py (=1, 2)

+ TR DR, L) + T ()] = 0. (4.6)
By using

pi(—=1,2) = —pi(L,2) and py(—1,2) = p5(1, 1)
and T (—1) = - T} (1) = —N2 we finally arrive at the following two characteristic
equations:

py(1, 1) + N> =0,
po(1, 2) + N? = 0.
These equations determig — 1) nonzero eigenvalues singg and p; are both polyno-

mials of degred} in 172,
For instance, folN = 4 we obtain the two characteristic equations

192. 21 4+16=0, 768-224+352."1+16=0,

which give the three eigenvalugs = 12, A, 3 = —11+ /73 (see also Table I).
Let us introduce

S ‘ ak+l
f(X, 1) = k;u ST TN (4.7)
and
On (X, p) = Z“ (xTN "(X) + X Ty (X). (4.8)

Now we prove that the roots dfy andgy have negative real parts.
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LEMMA 4.1. Let fy and gy be definedasit.7) and(4.8). Then §(1, ) and oy (1, u)
are Hurwitz polynomials.

Proof. The proof forfy has already been given in [11]. Here we only consglerWe
easily obtain

3
On (X, 1) = i On (X, ) = X T (X).

Let wy(t, u) = eYMtgy(x, u). Then

a 0 1
WN . wN _ . e(l/p.)t . XT,(] (X),
at X 1%

and if u is a root ofgy (1, ) thenu is also a root ofwy, i.e.,
wN(l, t) =0.
Furthermore we know that
1 w1 -
—-€ X Ty&X) =0, j=1,...,N—-1

wherex; denote the Chebyshev Gauss—Lobatto nodes. Now it can be shown (see [11])
wn (X, t) decreases in time and therefore jre< 0. =

Now let
fR () = Zu o 2k+3TN<1>+TN<1> (4.9)
2k+2
fi(w) = Zu @z (4.10)
and
2k+1
gn () = Zu X 2k+1(xm)’<1>+(xm>(1>, (4.11)
9%
gn () = Zukm(xm)’(l). (4.12)
k=0

LEMMA 4.2, Let f}, 2, g}, and ¢ be defined asit.9)—(4.12). Then £ and f2, g}
and ¢, form a positive pair.

Proof. One easily checks that
N + - 15 (w? = fn@ .
N (1) + 1 gl () = gn (L ),
where fy andgy are Hurwitz polynomials (see Lemma 4.1). This concludes the proof.

By means of this lemma we immediately obtain the following theorem.
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TABLE |
Amin and Amax Of A

N Amin Amax Amax/N®
4 2.4560 19544. 10 0.3054

8 2.4674 21437- 107 0.4187
16 2.4674 31748- 10° 0.7751
32 2.4674 £9939. 10* 1.5240
64 2.4674 0573 10¢° 3.0355
128 2.4674 2719. 10 6.0649

THEOREM4.1. The eigenvalues of the spectral operator A are real. One eigenvalue
equal to zero and the remaining N 1 eigenvalues are all distinct and have negative sigr
Alsq the eigenvalues of the spectral operator B are real. One eigenvalue is equal to z
and the remaining K — 1 eigenvalues have negative sign.

Proof. Letu = A~%, which induces
RO = prL A+ N? and gh(A™h) = py(L.2) + N2

We see thaf ! andgy, are identical to the characteristic polynomials. By using Lemma 4
we obtain the desired results of our theorem for the one-dimensional pseudo—Laplaci

The properties of the spectral operaBdirectly results form the tensor representatior
with A. In [14], Theorem 4.4, it is shown thatif, u € o (A) theni + u is an eigenvalue
of the Kronecker sunfiA® 1)+ (1 @ A) =B. =

REMARK 4.1. The result of Theorerd.1) implicitly indicates that our discretization
does not introduce spurious modes.

We have calculated the eigenvalue®ddndB numerically using the QR-Algorithm (see
e.g. [9]). All calculations were done on a Sun Ultra Enterprise 2000 under Solaris 2.6.
define

Amin = MIn{|A| | A # 0 eigenvalue ofA},
Amax = Max{|A| | A # O eigenvalue ofA}.
In Table | we present the maximal and the minimal eigenvalygsandimax Of A. Itis
numerically shown that,i, andimax Of A have a similar behavior as the eigenvalues ¢

(D?)°. For increasingN the minimal eigenvalug i, approximatesr?/4.
Table Il presentayin, andimax for the two-dimensional operatd.

TABLE Il
Amin and Amax Of B

N Amin Amax Amax/ N3
4 2.4560 39088- 10 0.6108
8 2.4674 2874 107 0.8374

16 2.4674 63496- 1C° 1.5502
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5. PRECONDITIONING

In the following section, efficient FD preconditioners for the spectral operator &
presented.

5.1. The One-Dimensional Case

To give a FD preconditioner foh we make use of the representations in (4.3) and (4.4
First, we have to find approximations for

p’(zj), j=21...,N,p(=1,andp'(1).
Forp”(zj),j =2,..., N — 1, we use the standard central FD scheme, i.e.,
0'(z) =2 <D(ZJ+1) - P@E) pE) - D(Zj1)> ' S (5.1)
Zj+1—Zj Zj = Zj-1 Zi+1—Zj-1

One observes that (5.1) is equivalent to

p"(zj) = ajp(zj—1) — (@j + ) p(zj) + ¢; p(Zj+1), (5.2)
where
o o
Sj-1S;_1 Sij_%
and

! Sj = sin ix
o= , = — .
2515 ! N

First, we try to apply one-sided first-order approximationsgtfz;) andp”(zy), i.e.,

p"(z1) = axp(z1) — (82 + C) p(22) + C2P(23), (5.3)
p"(zn) = an—1P(Zn-2) — (@n—1 + Cn—1) P(ZN-1) + CNn—1P(ZN)- (5.4)

For p'(—1) and p’(1) we also use one-sided finite differences and obtain

, - 1
P = e (P(z1) — p(22))

1
= @(p(zl) — P(22) (5.5)

and

1
pP'(—=1) = ——— - (p(zn) — P(Zn-1))

ZN — ZN-1

1
= —@(p(ZN) — p(zZn-1)). (5.6)

The FD scheme (5.2)—(5.6) is now associated with an FD operator, here Aaljed
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We want to examine the preconditioning propertieé\bg’o. ¢ = const.# 0 is obviously
an eigenfunction oAt with eigenvalue zero. To check the properties@f, we have to
eliminate the constant mode. To achieve this, we introduce a transformation Eatiinch
is defined by

p=Eaq,
where
10 0 - 0 0 1
01 0 - 0 0 1
0O o0 1. 0 0 1
E= . e .
000 .--101
000 ..- 011
0O 00 ..- 001

We now solve the problem ig and consider the modified operators
A= AE, Al,=ALE.

One can see that andAl, are identical toA and AL, apart from the last column which
is now identical to zero since the last column corresponds to constants. Matar easily
be inverted and does not change the structure of the spectral operator. By eliminatin
last column and one of the rows (here it is also the last one) we get a nonsingular syste
RN-1N-1 The corresponding spectral or FD operators are called

AO c RN_l’N_l, AJIEDO c RN—l,N—l'

Table 11l contains the eigenvalues of\,lzD‘O)‘le. We numerically observe that all eigen-
values are real.

One can see that the approximation of first order is a good preconditioner. The mini
eigenvalue is 1 and the maximal eigenvalue approximatg¢d, independent olN.

Now we want to use finite differences of second order for approximagi@;),
p’(zn), P'(1), and p’'(—1). The corresponding FD operator is caIIéc,quO and the
eigenvalues otA%D,O)‘lAO are presented in Table IV. Again we numerically obtain rec
eigenvalues and the minimal eigenvalue is 1. We also see that the maximal eigen\

TABLE Il
)\min and Amax Of (All:D,O)_l A()

N Amin Amax
4 1.00 1.359246
8 1.00 1.966774
16 1.00 2.246328
32 1.00 2.367677
64 1.00 2.421208

128 1.00 2.445527
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TABLE IV
Amin and Amax of (A2, )~1 Ag

N Amin Amax
4 1.00 1.295264
8 1.00 1.970879
16 1.00 2.249901
32 1.00 2.369083
64 1.00 2.421703
128 1.00 2.445697

approximatesr?/4. So this approximation yields no advantage compared with our fir
approximation.

Figures 1 and 2 present a graphical comparison between the method (N2} 2
method) and the method just presented. In relation to these approximations our metho
better properties than thé,N — 2 method. Finally, we employ the spectral scheme for th
derivativesp”(z1), p”(zn), p'(1), andp’(—1). Because of the corresponding FD operato
AR € RN"171 we especially use the presentation of (4.4). From Table V it can be se
that the maximal eigenvalue fro(ﬂiﬁ%yo)‘l,&o is bounded independent of.

Figure 3 shows that in the case of the spectral scheme our method with staggered
does not have preconditioner properties comparable to those df,tlie- 2 method. But
the maximal eigenvalue is also bounded independeht.of

At last we consider the case thal{—1) and p’(1) are both equal to zero. We obtain the
Neumann condition

p(-1)=p@ =0

By using this boundary condition the FD approximationst¢z;) and p”(zy) now read
as follows:

p"(z1) = —(a1 + C1) P(z1) + (a1 + €1) P(22),

p"(zn) = —(an-1 + Cn—1) P(Zn-1) + (BNn-1 + Cn-1) P(ZN-2).

25 17 | E— T T
N,N-2 method ~——
20 | staggered grids ---

5 10 15 20 25 30

FIG. 1. Maximal eigenvalue of preconditioneAky )~*Ao.
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TABLE V
Amin and Amax of (AZ )71 A

N Amin Amax
4 1.00 1.276142
8 1.00 2.228686
16 1.00 3.114336
32 1.00 3.761935
64 1.00 4.167232
128 1.00 4.396862

TABLE VI

Amin and Amax of (AN )~ A

N Amin Amax
4 1.121320 1.971857
8 1.019224 2.533468
16 1.003583 2.663229
32 1.000716 2.688467
64 1.000149 2.692843
128 1.000032 2.693627
AN T T T T T
N,N-2 method ——
20 b staggered grids —-~ =

FIG. 2. 0 A
ST T T T 1
s | N,N-2 method —— _|
staggered grids ---
4 - B -
3+ /// -~
/
/
2 _;/”f ]
1 -
0 | I 1 | 1 I

20 40 60 80 100 120

FIG.3. Maximal eigenvalue of preconditioneﬁ\,s:%vo)*l,&o.
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FIG. 4. Maximal eigenvalue of precondltlon(eAFD0 Ao

The correspondlng FD operator is calhethiD o- Figure 4 shows that the maximal eigen-
value of(AFD o) tAq is bounded independent df (see also Table VI).

BecauseA’;'E o Is a tridiagonal matrix, this preconditioner is preferred in practice. Th
is the only preconditioner which guarantees that the eigenvalues of the preconditic
operator all remain of the same sign. In the case ofNh — 2-method we also tested
ANE  as a preconditioner in practice, but we observed that the maximal eigenvalue beh
asO(N).

5.2. The Two-Dimensional Case

Similar results can be obtained in the two-dimensional case. Here we only considet
two-dimensional operator foAl, and Afy, which can be constructed analogously to the
spectral operators by means of tensor products.

Let

B =B(E®E)
and

By = Alp ® E+ E® Ay,
B = AR Q E + E® AR,

The operators3,, BFD o and BFD o are obtained by eliminating the last column and the
last row. One can extract the eigenvaluesi®l, o) ~*Bo and(Bgp o)~ Bo from Tables VI

TABLE VII
)\min and )\max Of (B%D,O)_l BO

N Amin Amax
4 1.00 5.425331
8 1.00 3.175775

16 1.00 2.706077
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TABLE VIl
Amin and Amax of (BF )72 Bo

N Amin Amax
4 0.929963 1.276142
8 0.799335 2.228690
16 0.732044 3.114336

and VIII. By approximation with FD differences of the first order one can see that t
maximal eigenvalue a8}, o)~ Bo approximates the maximal eigenvalug 8y, 5)~* A,.

In the case of the spectral scheme we obtain complex eigenvalues and the min
eigenvalue is less than one. The maximal eigenvalue is close to the maximal eigenval

(AD o) Ao
6. NUMERICAL RESULTS FOR THE STOKES EQUATIONS

6.1. The Steady Case

First, we give an example for the solution of (2.1)—(2.3). Let

_ 1 _ 1
x=§u+b,y=§w+b.

Becausg, y € [—1, 1] we know thatx, y € [0, 1].
Let us define

ui(X, y) =rs(y), Uz(x,y) = —=s(r(y),
P(X,y) =exp(x +y —1),
where
rx) = x2(1 — x)?,
s(y) = 2y(1— y)* — 2y*(1 - y).
Hence the functions;, u, satisfy
ui(x,y) = ux(x,y) =0 for(x,y) € 0Q.

Furthermorer ands are choosen such thit= s, which leads us to

ad 0 1 — =
5U1(X, y)+ a—yuz(X, y) = E(f (X)s(y) —s(x)r'(y)) = 0.
Therefore, the velocity field is divergence-free. By substitution;0fi, in (2.1) we obtain
the right-hand sidd .

Let o], v}, andgN be the approximations af;, up, and p. Then we can calculate the
absolute errors

ERUL = [|us — vy’ ERP= | p—qV2,

ERW = ||uz — v}’

|2’ 2’
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TABLE IX
Results for the Velocity and the Pseudo—Laplacian

N ERUL = ERW2 ERP
4 4.686-10° 2.355- 1072
8 3678-10712 3.807-10°°
12 3555. 10712 1.204-10°3

where

N 3 N 2
lvllz = [ZU(Xi,yj)Z] /N,nquz: [Z P, wj) 1 /N
i,j=0 i,j=1

denote the discrete?-norms inQ.
We calculate the above errors by taking sufficient time steps until the stopping criteri

Ju" —u™t),; < 1.0-1071,

is satisfied.

Table IX presents the results for the pseudo—Laplacian by using order-one method:
the time discretization and the extrapolationmpfObviously, the accuracy obtained p
is much worse than that af. This is because for the approximation of the pressure w
use polynomials of one degree less than that for the velocity by the use of staggered ¢
This means that more weight is put into approximating the velocity (compared to [12]).
particular the larger test space guarantees that (2.2) is satisfied more accurately.

6.2. The Unsteady Case
If v™*1is the exact velocity ang™*! the exact pressure at the time letgl;, we obtain

from (2.9) that

Bo - .
Zt(unﬂ ML L gty — V(an —pmlg §|n+1 _ qn+1) inQ.

Since the intermediate velociiy*! is determined by &-th order time differentiation
scheme and the extrapolated pressure Ithaorder scheme we observe that the erro
function

A
un+1 _ vn+1 + ﬂ_;v(pn-H _ qn+1) (6.1)

behaves as
o(ath) + o(at'th.
By takingr = k = | + 1 we finally find out that (6.1) behaves @At") for At — 0.

By combining a backward Euler scheme of second order with a first-order extrapolat
we obtain a method which is completely of second order in time. This theoretical re:
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TABLE X
Results for the Velocity and the Pseudo—Laplacian foN = 12 andr = 2

At = Ratio Ey, Ratio Ep Ratio
= 9.818-10* 1.053-10°3 5.831-10°2

= 2.513.10* 3.907 2696- 10 3.906 2666- 1072 2.187
T 6.333-10°° 3.968 6796-10°° 3.967 9617- 1072 2.564
= 1.584.10° 3.998 1700-10°° 3.998 4800- 107 2.004

is also confirmed by numerical calculations. For that purpose we consider the follow
example on [01]%. Let

ui(x, y, t) = z(Or (x)s(y),
uz(X, y, t) = —z()s(X)r (y),
P(X, y, t) = w(t) expX +y — 1),
where
r(X) = sin(zx)?,
s(X) =r'(X),
z(t) = (2r — 1+ sin(27t)) - i,
2
w(t) = cog2rt).
We calculate the mean quadratic errors:
Eu1 = max{ERUL : t > 0},
Eu,, = maxERWZ : t > 0},
Ep = max{ERP: t > 0}.

We compute these errors after the effect of initialization has disappeared. Then the e
become periodic in time because our functiamsdw’ are periodic. The numerical results
for the caseN = 12 andAt = 5, L, 13-, and i are given in Table X for = 2.

Forr = 3this method does not converge because of the use of staggered grids. There
we give also the numerical results for the ckse 1 andl = 1 (see Table XI).

TABLE XI
Results for the Pseudo—Laplacian foN = 12 andk =1 =1
At Ey, Ratio Ey, Ratio Ep Ratio
3% 6.477-10°° 6.658-10°° 7.024.1072
6%‘ 3.268-10°° 1.982 3313-10°3 2.010 3111-1072 2.258
%zs 1.647-10° 1.984 1659- 107 1.997 1195. 1072 2.603

2%5 8.281.10* 1.989 8310-10* 1.996 4873-10°3 2.454
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7. THE NAVIER-STOKES EQUATIONS

Now we consider the unsteady Navier—Stokes equations for incompressible flow:
velocity—pressure formulation:

%—évquFVer(u.V)u: f inQ=]-11 (7.1)
V-u=0 inQ=]-1,1p (7.2)

u=h onag, (7.3)

u=ug fort=0, inQ=]-1,1% (7.4)

Asin (2.7)—(2.11) we obtain

1 .
Ly ,umtt — FTevzal"“ +2.W-u"— Wt vyutpvpltt= 1M1 inQ, (7.5)

e = hm, (7.6)
and
3 n+1 _ mn+l
E . u Atu +V(pn+1_ 52+1) =0 inQ, (77)
V.ul=0 ingQ, (7.8)
Un+1 sV = hn+l - V. (79)

For the approximation of the convective term we use the Adams—Bashforth schem
second order. We consider the following example:

ui(x, y,t) = cogyt) - sin(n—zx) . cos(%/),

uz(X,y,t) = —cogyt) -COS(HZX> ~sin(n2y>,

PX, Y, 1) = % - €0 (y1)(COS(mX) + cogry)) + 10(x + ) - COS(y ).

Obviously,u; andu, satisfyV - u = 0:

aul+8u2 _T cogyt) - cos| X coSs Ty il cogqyt)-cos X coSs Ty

ax oy 2 v 2 2) 2 v 2 2
=0.

The source ternt is defined by (7.1)h by (7.3), and the initial conditiomniy by (7.4).
The Reynolds number is Re 100 and to start the time-integration the fields at level
—2At, —At, and 0 are equal to the exact solution.

7.1. The Steady Case

First we consider the steady case; iyes= 0. We compute the error

lp =llon — i,
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TABLE XII
Results for the Navier—Stokes Equations

N luy luy o

8 2.856- 107 2.720-107 6.350-10°°
12 5840. 102 4780102 1.075.10°°
16 1087-10°% 1172.10°% 2.105.10°%

i.e., the discrete error at the inner collocation points, where

1 N—-1
1917 = N =12 > b ypP

ij=1

Table Xl contains the results fakt = 0.01 andN = 8, 12, and 16.
From Table XlIll we can see that we achieved a second-order method in time for

7.2. The Unsteady Case

For the unsteady case we chogse- 5, At = 0.001, andN = 16. Figure 5 demon-
strates the temporal evolution of the err&ig andE,. We observe no amplification of the
oscillatiing errors in time, expressing the stability of the numerical solution.

7.3 The Regularized Cavity Flow

Finally, the regularized cavity flow in the domain0x, y < 1is computed. On the edge
y = 1 the fluid velocity is

ui(x, 1) = —16x%(1 — X)?,
uz(x, 1) =0,

whereu; = u, = 0 on the other three edges. The source térimidentical to zero.
To compare our results with the results in [4] we have to determine the streamfunc
Y and the vorticityw. There we have to compute in each time step
wn+1 — 3U2+1 auTrl
X oy

TABLE XIlI
Results for the Navier—Stokes Equations foN = 12 andr = 2,y =5

At ly, Ratio lu, Ratio lp Ratio
3—12 1.6021. 102 1.6021. 102 5.520- 1072

6%1 3.4444.10°3 4.6513 34444.10°3 4.6513 12652 102 4.3629
T;a 8.2226- 10 4.1889 82245. 104 4.1880 30681- 1073 4.1237

2—26 2.0133.10* 4.0841 2012010 4.0877 76495. 1074 4.0108
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FIG.5. Temporal evolution of the errofs,, andE, for At = 0.001 andN = 16.
We consider that the steady case is reached when
n+1 n
max j |~ — o
ot} n+'1’" <2.10°°. (7.10)
At - max,j|of J-
Then we calculate the streamfunctigrby
V3 = —w inQ=]0,1[% (7.112)

Table XIV displays the maximal time steft. for N = 16, 20, and 24 for Reynolds
numbers Re= 100 and 400. Table XV contains the maximal value/¥f on the inner
collocation pointsVl; - M B represents the results in [4]. Table XVI shows the correspondir
results forjw| on the collocation point#l, on the sidey = 1.

Note thatM, does not give a precise account of the maximumwpbecause of the strong
variation of the vorticity on the edge= 1 and the uneven spacing of the collocation points
But since the approximation on= 1 is done by a polynomial defined at every [0, 1]
we have divided the space into 201 equally spaced points on this edge. The correspot
values ofjw| are presented in Table XVII (denotédk).

TABLE XIV
Critical Time Step At (with an error of +1073)

N Re= 100 Re= 400
16 0.303 0.104
20 0.250 0.074

24 0.234 0.056
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TABLE XV

Maximal Value of |1|?

Re= 100 Re= 400
N My ME M;
16 83160x 1072 8.3160x 1072 8.5777x 1072 8.5452x 1072
(0.40-0.78 (0.40-0.78) (0.40— 0.60 (0.40— 0.60
20 82694x 1072 8.2695x 1072 8.5192x 1072 8.5213x 1072
(0.42-0.73) (0.42—0.73) (0.42 - 0.58) (0.42— 0.58)
24 83315x 102 8.3315x 1072 8.5716x 1072 8.5715x 1072
(0.37—-0.75 (0.37—0.75) (0.43-0.63 (0.43—-0.63)
32 83402x 1072 8.3402x 1072 8.5480x 1072 8.4007x 1072
(0.40—0.74) (0.40—0.74 (0.40— 0.60 (0.40— 0.65)
2The coordinates are given in parentheses.
TABLE XVI
Maximal Value of |w|?
Re= 100 Re= 400
N M2 M, M2 M,
16 13.3467 13.3442 24.7759 24.6541
(0.60) (0.60) (0.60) (0.60)
20 13.1759 13.1762 24.6268 24.6243
(0.65) (0.65) (0.65) (0.65)
24 13.4226 13.4228 24.9157 249143
(0.63) (0.63) (0.63) (0.63)
32 13.3423 13.3422 24.7845 24.9783
(0.60) (0.60) (0.65) (0.65)
2The coordinates are given in parentheses.
TABLE XVII
Maximal Value of |w|?
Re= 100 Re= 400
N Vs Ms M2 Ms
16 13.4476 13.4434 25.1604 25.0222
(0.620) (0.620) (0.625) (0.625)
20 13.4441 13.4441 24.9273 24.9241
(0.620) (0.620) (0.630) (0.630)
24 13.4446 13.4565 24.9148 24.9010
(0.610) (0.620) (0.630) (0.625)
32 13.4448 13.4430 24.9109 25.1123
(0.620) (0.620) (0.630) (0.625)

2 The coordinates are given in parentheses.

153



154 HASCHKE AND HEINRICHS

8. CONCLUSIONS

We have presented and discussed the splitting for the unsteady Stokes equations wt
we decoupled the system into Helmholtz equations for the velocity and an equation with
pseudo-Laplacian for the pressure. The spatial discretization is performedpywaHR 1
Chebyshev collocation-type method by using staggered grids. Then we have extende
splitting scheme to the Navier—Stokes equations. Our discretization is free of spuri
modes and we have found a good preconditioner for the ill-conditioned pseudo-Laplac
While we have lost some accuracy in the pressure, good results for the approximatic
the velocity are achieved.
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