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A pseudo-spectral approximation for the Navier–Stokes equations in the 2D case
is presented using a new splitting technique based on the Uzawa algorithm. The
system is decoupled into Helmholtz equations for the velocity and an equation with
the pseudo-Laplacian for the pressure. Staggered grids with Gauss– and Gauss–
Lobatto nodes are employed. Preconditioning with finite differences is considered.
By extrapolation, a stable second-order method in time for the velocity and at least
a first-order method for the pressure can be achieved.c© 2001 Academic Press

1. INTRODUCTION

We present a pseudo-spectral approximation for the Navier–Stokes equations. For sim-
plicity, we first consider the unsteady Stokes equation which is discretized by a Chebyshev
collocation method. This means that the solution is approximated by global Chebyshev
polynomials (see, e.g., Canutoet al. [7]).

Our approach to solve the spectral system is to use a global iterative decoupling procedure.
This procedure is an extension of the classical Uzawa algorithm (Arrowet al. [1]) which
was already extensively used in the finite element context (see Bristeauet al. [6], Girault
and Raviart [10], Brezzi and Fortin [5], Babuˇska and Suri [2], and Temam [19]). In the
context of spectral element methods, this approach was also chosen by Madayet al. [15]
and Rønquist [18].

Finally, we present a decoupling where we reduce the problem to the solution of a
Helmholtz equation and another equation with the pseudo-Laplacian for the pressure. To
avoid spurious modes we introduce two grids by taking the Gauss nodes for the pressure
and the standard Chebyshev Gauss–Lobatto nodes for the velocity. Thereby the pressure is
approximated by polynomials of one degree less than those used for the velocity. A similar
idea was proposed by Bernardi and Maday [3] where three grids are used, one for the pressure
and two for the velocity, i.e., one for each velocity component. Their technique based on the
use of Legendre polynomials, but without any splitting technique. Moreover, no numerical
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results are presented in [3]. Another method without the use of staggered grids is considered
by Heinrichs [12], where the pressure is approximated by polynomials of two degree less
than for the velocity. We show that our new approach has better preconditioning properties
than the method by Heinrichs described above. In [13] another related method is proposed
is where both velocity and pressure are approximated by polynomials of orderN. However,
this leads to four spurious modes. A large number of related methods using staggered grids
can be found in the recent literature. The main difference between these methods and our
approach presented here is that we combine staggered grids with an appropriate splitting
technique. This has obvious advantages for the implementation and computational cost.

We also prove that the eigenvalues of the spectral pseudo–Laplacian are real and negative
(except of one eigenvalue which is zero and belongs to the constant mode). This implies that
we have no spurious modes. Since the spectral pseudo–Laplacian is very ill-conditioned we
present suitable finite difference (FD) preconditioners for an effective iterative solver.

We transfer our splitting for the unsteady Stokes equation to the Navier–Stokes equations
where we have a closer look at the convective term. For the time discretization a high-order
backward differentiation scheme for the intermediate velocity is combined with a high-order
extrapolant for the pressure. It is numerically shown that a stable second-order method in
time for the velocity and at least first order for the pressure can be achieved.

2. TIME SPLITTING SCHEME

We consider the unsteady Stokes equations

∂u

∂t
−∇2u+∇ p = f in Ä = (−1, 1)2, (2.1)

∇ · u = 0 inÄ, (2.2)

u = 0 on∂Ä, (2.3)

whereu = (u1, u2)
t denotes the velocity andp the pressure. The functionf : Ä→ IR2 is

a given force. We impose the average pressure to be zero; i.e.,∫
Ä

p dx= 0,

as the pressure is only determined up to a constant.
The BDF (see [8]) time discretization of Eqs. (2.1)–(2.3) leads to the scheme

Ln
t,kun+1−∇2un+1+∇ pn+1 = f n+1 in Ä, (2.4)

∇ · un+1 = 0 inÄ, (2.5)

un+1 = 0 on∂Ä, (2.6)

where4t denotes the step size int and the indexn+ 1 indicates that the functions are
evaluated at the time steptn+1 = (n+ 1) · 4t . Ln

t,k represents the backward differentation
scheme for the approximation of∂

∂t andk is the order of the scheme.Ln
t,k can be written as

Ln
t,kun+1 = 1

4t

k∑
m=0

βmun+1−m.
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Fork = 1 the standard backward Euler scheme is given byβ0 = 1, β1 = −1 and we obtain

Ln
t,1un+1 = un+1− un

4t
.

This algorithm is of first order in time.
A second-order scheme can be obtained fork = 2 usingβ0 = 3

2, β1 = −2, β2 = 1
2:

Ln
t,2un+1 =

3
2un+1− 2un + 1

2un−1

4t
.

Finally, a method of third order fork = 3 is given applyingβ0 = 11
6 , β1 = −3, β2 = 3

2, and
β3 = − 1

3.
To minimize the computational cost we introduce the following splitting scheme which

was proposed by Madayet al. [16]. We obtain

Ln
t,kũn+1−∇2ũn+1+∇ p̄n+1

l = f n+1 in Ä, (2.7)

ũn+1 = 0 on∂Ä, (2.8)

and

β0
un+1− ũn+1

4t
+∇(pn+1− p̄n+1

l

) = 0 inÄ, (2.9)

∇ · un+1 = 0 inÄ, (2.10)

un+1 · ν = 0 on∂Ä. (2.11)

Here,ν denotes the outer unit normal,ũn+1 an intermediate velocity, and̄pn+1
l an extrapolant

for the pressure obtained from the previousl time steps.
Obviously the order of convergence depends on the orderk of the backward differentiation

scheme and on the orderl of the extrapolation where

p̄n+1
l =

l−1∑
m=0

γm pn−m,

the valuesγm,m= 0, . . . , l − 1, being suitable coeffcients. Forl = 1 we use especially
γ0 = 1; for l = 2 we haveγ0 = 2, γ1 = −1.

Let

f̃
n+1 = f n+1− 1

4t

k∑
m=1

βmun+1−m −∇ p̄n+1
l .

Equations (2.7) and (2.8) are equivalent to the following Helmholtz problem:(
−∇2+ β0

1

4t
I

)
ũn+1 = f̃

n+1
in Ä, (2.12)

ũn+1 = 0 on∂Ä. (2.13)
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The system (2.9)–(2.11) corresponds to

β0
1

4t
un+1+∇ pn+1 = gn+1 in Ä, (2.14)

∇ · un+1 = 0 inÄ, (2.15)

un+1 · ν = 0 on∂Ä, (2.16)

wheregn+1 = β0
1
4t ũ

n+1+∇ p̄n+1
l . From now on we will consider (2.14)–(2.16).

3. PSEUDO-SPECTRAL DISCRETIZATION

To give a pseudo-spectral discretization of the Stokes systems we have to define spec-
tral operators for the velocity and the pressure. This is done in the one-dimensional case
first. In the two-dimensional case we get the corresponding operators by tensor product
representation.

For N ∈ IN let IPN be the space of polynomials of degree≤N, while IP0
N is the space

of polynomials in IPN which in addition fulfill the homogeneous Dirichlet boundary con-
ditions. We approximateu by polynomials in IP0N and p by polynomials in IPN−1. We
apply staggered grids where the velocity is defined at the Gauss–Lobatto nodes(xi , yj ) =
(cos iπ

N , cos jπ
N ), i, j = 0, . . . , N, while the pressure is evaluated at the Gauss nodes

(zi , w j ) = (cos(2i − 1)π
2N , cos(2 j − 1)π

2N ), i, j = 1, . . . , N. We only consider evenN. For odd
N a similar treatment is possible.

Here we use the pseudo-spectral Chebyshev discretization. The corresponding spectral
derivative operator for the velocity components can be found in [17].

After eliminating the boundary conditions we obtain

u′(xj ) ∼=
(
D̂0

uu
)

j , j = 0, . . . , N,

whereD̂0
u ∈ IRN+1,N−1, xj = cos jπ

N , j = 0, . . . , N. Now we have to interpolate between
the Gauss–Lobatto and the Gauss nodes. IfT ∈ IRN,N+1 denotes the interpolation matrix
we derive

u′(zj ) ∼=
(
TD̂0

uu
)

j
, j = 1, . . . , N.

The operatorD0 = TD̂0
u ∈ IRN,N−1 represents the first derivative operator. The second

derivative is considered at the Gauss–Lobatto nodes and reads

u′′(xj ) ∼=
((

D2
u

)0
u
)

j , j = 1, . . . , N − 1,

where(D2
u)

0 ∈ IRN−1,N−1.
Now let us define the derivative operator for the pressure. Note that one has to interpolate

between the Gauss and the Gauss–Lobatto nodes. We get

p′(xj ) ∼= (Dp) j , j = 1, . . . , N − 1,

whereD ∈ IRN−1,N is given by

D = Tp1 D̂pTp2.
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Tp2 ∈ IRN,N interpolates into IPN−1, D̂p ∈ IRN,N performs the differentiation in the coef-
ficient space, andTp1 ∈ IRN−1,N transforms back in the physical space. So we transform
directly onto the Gauss–Lobatto nodes.

D̂p = (di, j )i, j=1,...,N is explicitly defined as

di, j =
{

2( j−1)
ci

, j = i + 1, i + 3, . . . , N − 1

0, else

ci =
{

2, i = 1

1, else.

For the two-dimensional space we calculate the derivative operators by the tensor product
representation. We can introduce the partial differential operators for the velocity as

∂

∂x
: D0

x = D0⊗ I ,
∂

∂y
: D0

y = I ⊗ D0,

∂2

∂x2
: D0

xx =
(
D2

u

)0⊗ I ,
∂2

∂y2
: D0

yy = I ⊗ (D2
u

)0
,

∂2

∂x2
+ ∂2

∂y2
: D0
4 =

(
D0

xx + D0
yy

)
,

whereI ∈ IRN,N denotes the identity matrix. This induces:D0
x, D0

y ∈ IRN2,(N−1)·N .
For the pressure we work analogously to write

∂

∂x
: Dx = D ⊗ I ,

∂

∂y
: Dy = I ⊗ D,

whereDx, Dy ∈ IR(N−1)·N,N2
.

Note that the transform from Gauss–Lobatto to Gauss nodes (and vice-versa) is done only
in one variable. Therefore, we need a new definition for the pseudo-spectral discretization.
For the velocity it is given by

∂

∂xG
: D0

x,G = D0⊗ T,
∂

∂yG
: D0

y,G = T ⊗ D0,

and for the pressure by

∂

∂xGL
: Dx,GL = D ⊗ (Tp1 · Tp2

)
,

∂

∂yGL
: Dy,GL =

(
Tp1 · Tp2

)⊗ D.

The indexG indicates that we transform onto the Gauss nodes (analogously,GL).
Now we are able to provide the pseudo-spectral discretization for the Stokes problem.

First we consider (2.4)–(2.6), which gives(
−D0

4 + β0
1

4t
I

)
un+1

1 + Dx,GL pn+1 = f̂ n+1
1 in Ä, (3.1)(

−D0
4 + β0

1

4t
I

)
un+1

2 + Dy,GL pn+1 = f̂ n+1
2 in Ä, (3.2)
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D0
x,Gun+1

1 + D0
y,Gun+1

2 = 0 inÄ, (3.3)

un+1
1 = un+1

2 = 0 on∂Ä, (3.4)

where

f̂ n+1
i = f n+1

i − 1

4t

k∑
m=1

βmun+1−m
i (i = 1, 2).

Since we would like to use the operator splitting we have to solve a Helmholtz problem for
the intermediate velocity components, which reads(

−D0
4 + β0

1

4t
I

)
ũn+1

i = f̃
n+1
i in Ä, (3.5)

ũn+1
i = 0 on∂Ä, i = 1, 2, (3.6)

and

β0
1

4t
un+1

1 + Dx,GL pn+1 = gn+1
1 in Ä, (3.7)

β0
1

4t
un+1

2 + Dy,GL pn+1 = gn+1
2 in Ä, (3.8)

D0
x,Gun+1

1 + D0
y,Gun+1

2 = 0 inÄ, (3.9)

un+1
1 = un+1

2 = 0 on∂Ä. (3.10)

By applying the divergence to the first two equations and further using the divergence-free
condition (Uzawa decoupling) we finally obtain an equation with the pseudo-Laplacian for
the pressure: (

D0
x,G Dx,GL+ D0

y,G Dy,GL
)

pn+1 = D0
x,Ggn+1

1 + D0
y,Ggn+1

2 . (3.11)

The operatorB ∈ IRN2,N2
with

B = D0
x,G Dx,GL + D0

y,G Dy,GL

= D0
x Dx + D0

y Dy

is called thepseudo-Laplacianor energy.

4. PROPERTIES OF THE SPECTRAL PSEUDO-LAPLACIAN

In this section we consider the pseudo–Laplacian

B = D0
x Dx + D0

y Dy = A⊗ I + I ⊗ A.

First, we consider the one-dimensional pseudo–Laplacian

A = D0D.
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For an analysis ofA we introduce a somewhat different representation ofA. Let p be a
polynomial in IPN−1. Applying A to p is equivalent to first applyingD to p and thenD0 to
Dp. We obtain

p′(xj ) = (Dp) j , j = 1, . . . , N − 1,

where we considerp as a vector in IRN .
Before applyingD0 to Dp we have to mapp′ onto a polynomialp′0 ∈ IP0

N , which is
defined by

p′0(xj ) = p′(xj ), j = 1, . . . , N − 1.

Obviously,p′0 can explicitly be written as

p′0 = p′ + αT ′N + βxT′N, (4.1)

whereTN denotes theNth Chebyshev polynomial. The coefficientsα andβ are determined
such thatp′0(1) = p′0(−1) = 0; i.e.,

α = 1

2N2
(p′(−1)− p′(1)),

β = − 1

2N2
(p′(−1)+ p′(1)).

Applying D0 to Dp is equivalent to taking the first derivative ofp′0; i.e.,

p′′0 = p′′ + αT ′′N + β(xT′N)
′. (4.2)

We derive

(Ap) j = p′′(zj )+ αT ′′N(zj )+ β(xT′N)
′(zj )

= p′′(zj )+ 1

2N2
(p′(−1)− p′(1))T ′′N(zj )− 1

2N2
(p′(−1)+ p′(1)) · (xT′N)

′(zj )

= p′′(zj )+ 1

2N2
p′(−1) · (T ′′N(zj ) · (1− zj )− T ′N(zj ))

− 1

2N2
p′(1)(T ′′N(zj ) · (1+ zj )+ T ′N(zj )),

wherezj are the Gauss nodes forj = 1, . . . , N.
Knowing that

T ′N(zj ) = (−1) j · N · 1√
1− z2

j

and

T ′′N(zj ) = (−1) j · N · zj(
1− z2

j

)3/2 ,
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it follows for (Ap) j , with j = 1, . . . , N,

(Ap) j = p′′(zj )+ 1

2N
p′(−1)

(−1) j+1(1− zj )(
1− z2

j

)3/2 + 1

2N
p′(1)

(−1) j+1(1+ zj )(
1− z2

j

)3/2 . (4.3)

In order to representA in matrix notation, we introduce two diagonal matricesD−,
D+ ∈ RN,N :

D− = diag(d−j, j ) j=1,...,N : d−j, j =
(−1) j+1(1− zj )(

1− z2
j

)3/2 , j = 1, . . . , N,

D+ = diag(d+j, j ) j=1,...,N : d+j, j =
(−1) j+1(1+ zj )(

1− z2
j

)3/2 , j = 1, . . . , N.

Furthermore, we define two matricesP+, P− ∈ RN,N which representp′(1), p′(−1). To be
more precise

P+ = e+ f t
+, f+ = et

+ D̂pTp2,

P− = e+ f t
−, f− = et

− D̂pTp2,

wheree+ = (1, 1, . . . ,1)t , e− = (1,−1, . . . ,1,−1)t ∈ IRN . Obviously P+ and P− have
rank 1. We obtain the following representation:

A = D2+ D−P− + D+P+. (4.4)

Our aim is to prove that the eigenvalues ofA are real.
Let p ∈ IPN−1 be an eigenfunction ofA with respect to the eigenvalueλ. We have

p′′ + αT ′′N + β(xT′N)
′ − λp ≡ 0. (4.5)

First, we consider the caseλ = 0. It is easy to see thatp = const. 6= 0 is an eigenfuction.
Furthermore, notice thatp′′ ∈ IPN−3 butαT ′′N + β(xT′n)

′ ∈ IPN−1. This impliesα = β = 0,
inducing

p′(−1) = p′(1) = 0.

This implies that all eigenfunctions associated withλ = 0 are constant.
In what follows we consider the caseλ 6= 0, p 6= const. Let us introducep1 ≡ p1(x, λ) ∈

IPN−2, p2 ≡ p2(x, λ) ∈ IPN−1 satisfying

λp1− p′′1 = T ′′N,

λp2− p′′2 = (xT′N)
′.

We definep1 and p2 by

p1 =
∞∑

k=0

λ−k−1 ∂
2k

∂x2k
T ′′N,

p2 =
∞∑

k=0

λ−k−1 ∂
2k

∂x2k
(xT′N)

′
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(see [11]), andp is given by

p = αp1+ βp2.

Hereα, β have to be chosen such that

(p′1(1, λ)+ T ′N(1)) · α + (p′2(1, λ)+ T ′N(1)) · β = 0,

(p′1(−1, λ)+ T ′N(−1)) · α + (p′2(−1, λ)− T ′N(−1)) · β = 0.

This system of equations has a nontrivial solution if and only if the determinant vanishes,
i.e.,

[(p′1(1, λ)+ T ′N(1))(−p′2(−1, λ)+ T ′N(−1))] − [(p′1(−1, λ)

+ T ′N(−1))(p′2(1, λ)+ T ′N(1))] = 0. (4.6)

By using

p′1(−1, λ) = −p′1(1, λ) and p′2(−1, λ) = p′2(1, λ)

and T ′N(−1) = −T ′N(1) = −N2 we finally arrive at the following two characteristic
equations:

p′1(1, λ)+ N2 = 0,

p′2(1, λ)+ N2 = 0.

These equations determine(N − 1) nonzero eigenvalues sincep′1 andp′2 are both polyno-
mials of degreeN

2 in λ−1.
For instance, forN = 4 we obtain the two characteristic equations

192· λ−1+ 16= 0, 768· λ−2+ 352λ−1+ 16= 0,

which give the three eigenvaluesλ1 = 12, λ2,3 = −11±√73 (see also Table I).
Let us introduce

fN(x, µ) =
∞∑

k=0

µk ∂
k+1

∂xk+1
TN(x) (4.7)

and

gN(x, µ) =
∞∑

k=0

µk+1 ∂
k

∂xk
(xT′N)

′(x)+ xT′N(x). (4.8)

Now we prove that the roots offN andgN have negative real parts.
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LEMMA 4.1. Let fN and gN be defined as in(4.7)and(4.8). Then fN(1, µ) and gN(1, µ)
are Hurwitz polynomials.

Proof. The proof for fN has already been given in [11]. Here we only considergN . We
easily obtain

gN(x, µ)− µ ∂

∂x
gN(x, µ) = xT′N(x).

LetwN(t, µ) = e(1/µ)t gN(x, µ). Then

∂wN

∂t
− ∂wN

∂x
= 1

µ
· e(1/µ)t · xT′N(x),

and ifµ is a root ofgN(1, µ) thenµ is also a root ofwN , i.e.,

wN(1, t) = 0.

Furthermore we know that

1

µ
· e(1/µ)t · xj T

′
N(xj ) = 0, j = 1, . . . , N − 1,

wherexj denote the Chebyshev Gauss–Lobatto nodes. Now it can be shown (see [11]) that
wN(x, t) decreases in time and therefore Reµ < 0. ■

Now let

f 1
N(µ) =

∞∑
k=0

µk+1 ∂
2k+3

∂x2k+3
TN(1)+ T ′N(1), (4.9)

f 2
N(µ) =

∞∑
k=0

µk ∂
2k+2

∂x2k+2
TN(1) (4.10)

and

g1
N(µ) =

∞∑
k=0

µk+1 ∂
2k+1

∂x2k+1
(xT′N)

′(1)+ (xT′N)(1), (4.11)

g2
N(µ) =

∞∑
k=0

µk ∂
2k

∂x2k
(xT′N)

′(1). (4.12)

LEMMA 4.2. Let f1
N, f 2

N, g
1
N, and g2

N be defined as in(4.9)–(4.12). Then f1N and f2
N, g1

N

and g2
N form a positive pair.

Proof. One easily checks that

f 1
N(µ

2)+ µ · f 2
N(µ

2) = fN(1, µ),

g1
N(µ

2)+ µ · g2
N(µ

2) = gN(1, µ),

where fN andgN are Hurwitz polynomials (see Lemma 4.1). This concludes the proof.■

By means of this lemma we immediately obtain the following theorem.
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TABLE I

λmin andλmax of A

N λmin λmax λmax/N3

4 2.4560 1.9544· 101 0.3054
8 2.4674 2.1437· 102 0.4187

16 2.4674 3.1748· 103 0.7751
32 2.4674 4.9939· 104 1.5240
64 2.4674 7.9573· 105 3.0355

128 2.4674 1.2719· 107 6.0649

THEOREM 4.1. The eigenvalues of the spectral operator A are real. One eigenvalue is
equal to zero and the remaining N− 1 eigenvalues are all distinct and have negative sign.
Also, the eigenvalues of the spectral operator B are real. One eigenvalue is equal to zero
and the remaining N2− 1 eigenvalues have negative sign.

Proof. Letµ = λ−1, which induces

f 1
N(λ
−1) = p′1(1, λ)+ N2 and g1

N(λ
−1) = p′2(1, λ)+ N2.

We see thatf 1
N andg1

N are identical to the characteristic polynomials. By using Lemma 4.2
we obtain the desired results of our theorem for the one-dimensional pseudo–Laplacian.

The properties of the spectral operatorB directly results form the tensor representation
with A. In [14], Theorem 4.4, it is shown that ifλ,µ ∈ σ(A) thenλ+ µ is an eigenvalue
of the Kronecker sum(A⊗ I )+ (I ⊗ A) = B. ■

REMARK 4.1. The result of Theorem(4.1) implicitly indicates that our discretization
does not introduce spurious modes.

We have calculated the eigenvalues ofA andB numerically using the QR-Algorithm (see
e.g. [9]). All calculations were done on a Sun Ultra Enterprise 2000 under Solaris 2.6. We
define

λmin = min{|λ| | λ 6= 0 eigenvalue ofA},
λmax = max{|λ| | λ 6= 0 eigenvalue ofA}.

In Table I we present the maximal and the minimal eigenvaluesλmin andλmax of A. It is
numerically shown thatλmin andλmax of A have a similar behavior as the eigenvalues of
(D2)0. For increasingN the minimal eigenvalueλmin approximatesπ2/4.

Table II presentsλmin andλmax for the two-dimensional operatorB.

TABLE II

λmin andλmax of B

N λmin λmax λmax/N3

4 2.4560 3.9088· 101 0.6108
8 2.4674 4.2874· 102 0.8374

16 2.4674 6.3496· 103 1.5502
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5. PRECONDITIONING

In the following section, efficient FD preconditioners for the spectral operator are
presented.

5.1. The One-Dimensional Case

To give a FD preconditioner forA we make use of the representations in (4.3) and (4.4).
First, we have to find approximations for

p′′(zj ), j = 1, . . . , N, p′(−1), and p′(1).

For p′′(zj ), j = 2, . . . , N − 1, we use the standard central FD scheme, i.e.,

p′′(zj ) ∼= 2 ·
(

p(zj+1)− p(zj )

zj+1− zj
− p(zj )− p(zj−1)

zj − zj−1

)
· 1

zj+1− zj−1
. (5.1)

One observes that (5.1) is equivalent to

p′′(zj ) ∼= aj p(zj−1)− (aj + cj )p(zj )+ cj p(zj+1), (5.2)

where

aj = α

sj−1sj− 1
2

, cj = α

sj sj− 1
2

and

α = 1

2s1
2
s1
, sj = sin

(
jπ

N

)
.

First, we try to apply one-sided first-order approximations forp′′(z1) and p′′(zN), i.e.,

p′′(z1) ∼= a2 p(z1)− (a2+ c2)p(z2)+ c2 p(z3), (5.3)

p′′(zN) ∼= aN−1 p(zN−2)− (aN−1+ cN−1)p(zN−1)+ cN−1 p(zN). (5.4)

For p′(−1) and p′(1) we also use one-sided finite differences and obtain

p′(1) ∼= 1

z1− z2
· (p(z1)− p(z2))

= 1

2s1s1
2

(p(z1)− p(z2)) (5.5)

and

p′(−1) ∼= 1

zN − zN−1
· (p(zN)− p(zN−1))

= − 1

2s1s1
2

(p(zN)− p(zN−1)). (5.6)

The FD scheme (5.2)–(5.6) is now associated with an FD operator, here calledA1
FD.
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We want to examine the preconditioning properties ofA1
FD,0. c = const.6= 0 is obviously

an eigenfunction ofA1
FD with eigenvalue zero. To check the properties ofA1

FD we have to
eliminate the constant mode. To achieve this, we introduce a transformation matrixE, which
is defined by

p = Eq,

where

E =



1 0 0 · · · 0 0 1
0 1 0 · · · 0 0 1
0 0 1 · · · 0 0 1

... · · · ...

0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 1


.

We now solve the problem inq and consider the modified operators

Â = AE, Â1
FD = A1

FD E.

One can see that̂A andÂ1
FD are identical toA andA1

FD, apart from the last column which
is now identical to zero since the last column corresponds to constants. MatrixE can easily
be inverted and does not change the structure of the spectral operator. By eliminating the
last column and one of the rows (here it is also the last one) we get a nonsingular system in
IRN−1,N−1. The corresponding spectral or FD operators are called

Â0 ∈ IRN−1,N−1, Â1
FD,0 ∈ IRN−1,N−1.

Table III contains the eigenvalues of(Â1
FD,0)

−1 Â0. We numerically observe that all eigen-
values are real.

One can see that the approximation of first order is a good preconditioner. The minimal
eigenvalue is 1 and the maximal eigenvalue approximatesπ2/4, independent ofN.

Now we want to use finite differences of second order for approximatingp′′(z1),

p′′(zN), p′(1), and p′(−1). The corresponding FD operator is called̂A2
FD,0 and the

eigenvalues of(Â2
FD,0)

−1 Â0 are presented in Table IV. Again we numerically obtain real
eigenvalues and the minimal eigenvalue is 1. We also see that the maximal eigenvalue

TABLE III

λmin andλmax of (Â1
FD,0)

−1 Â0

N λmin λmax

4 1.00 1.359246
8 1.00 1.966774

16 1.00 2.246328
32 1.00 2.367677
64 1.00 2.421208

128 1.00 2.445527
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TABLE IV

λmin andλmax of (Â2
FD,0)

−1 Â0

N λmin λmax

4 1.00 1.295264
8 1.00 1.970879

16 1.00 2.249901
32 1.00 2.369083
64 1.00 2.421703

128 1.00 2.445697

approximatesπ2/4. So this approximation yields no advantage compared with our first
approximation.

Figures 1 and 2 present a graphical comparison between the method in [12](N,N − 2
method) and the method just presented. In relation to these approximations our method has
better properties than theN,N − 2 method. Finally, we employ the spectral scheme for the
derivativesp′′(z1), p′′(zN), p′(1), andp′(−1). Because of the corresponding FD operator
Âsp

FD,0 ∈ IRN−1,−1 we especially use the presentation of (4.4). From Table V it can be seen
that the maximal eigenvalue from(Âsp

FD,0)
−1 Â0 is bounded independent ofN.

Figure 3 shows that in the case of the spectral scheme our method with staggered grids
does not have preconditioner properties comparable to those of theN,N − 2 method. But
the maximal eigenvalue is also bounded independent ofN.

At last we consider the case thatp′(−1) andp′(1) are both equal to zero. We obtain the
Neumann condition

p′(−1) = p′(1) = 0.

By using this boundary condition the FD approximations forp′′(z1) and p′′(zN) now read
as follows:

p′′(z1) ∼= −(a1+ c1)p(z1)+ (a1+ c1)p(z2),

p′′(zN) ∼= −(aN−1+ cN−1)p(zN−1)+ (aN−1+ cN−1)p(zN−2).

FIG. 1. Maximal eigenvalue of preconditioner(Â1
FD,0

)−1 Â0.
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TABLE V

λmin andλmax of (Âsp
FD,0)

−1 Â0

N λmin λmax

4 1.00 1.276142
8 1.00 2.228686

16 1.00 3.114336
32 1.00 3.761935
64 1.00 4.167232

128 1.00 4.396862

TABLE VI

λmin andλmax of (ÂNE
FD,0)

−1 Â0

N λmin λmax

4 1.121320 1.971857
8 1.019224 2.533468

16 1.003583 2.663229
32 1.000716 2.688467
64 1.000149 2.692843

128 1.000032 2.693627

FIG. 2. Maximal eigenvalue of preconditioner(Â2
FD,0

)−1 Â0.

FIG. 3. Maximal eigenvalue of preconditioner(Âsp
FD,0

)−1 Â0.
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FIG. 4. Maximal eigenvalue of preconditioner(ÂNE
FD,0

)−1 Â0.

The corresponding FD operator is calledÂNE
FD,0. Figure 4 shows that the maximal eigen-

value of(ÂNE
FD,0)

−1 Â0 is bounded independent ofN (see also Table VI).
BecauseÂNE

FD,0 is a tridiagonal matrix, this preconditioner is preferred in practice. This
is the only preconditioner which guarantees that the eigenvalues of the preconditioned
operator all remain of the same sign. In the case of theN,N − 2-method we also tested
ÂNE

FD,0 as a preconditioner in practice, but we observed that the maximal eigenvalue behaves
asO(N).

5.2. The Two-Dimensional Case

Similar results can be obtained in the two-dimensional case. Here we only consider the
two-dimensional operator forA1

FD and Asp
FD, which can be constructed analogously to the

spectral operators by means of tensor products.
Let

B̂ = B(E ⊗ E)

and

B̂1
FD = Â1

F D ⊗ E + E ⊗ Â1
FD,

B̂sp
FD = Âsp

FD ⊗ E + E ⊗ Âsp
FD.

The operatorŝB0, B̂1
FD,0, and B̂sp

FD,0 are obtained by eliminating the last column and the
last row. One can extract the eigenvalues of(B̂1

FD,0)
−1B̂0 and(B̂sp

FD,0)
−1B̂0 from Tables VII

TABLE VII

λmin andλmax of (B̂1
FD,0)

−1 B̂0

N λmin λmax

4 1.00 5.425331
8 1.00 3.175775

16 1.00 2.706077
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TABLE VIII

λmin andλmax of (B̂sp
FD,0)

−1 B̂0

N λmin λmax

4 0.929963 1.276142
8 0.799335 2.228690

16 0.732044 3.114336

and VIII. By approximation with FD differences of the first order one can see that the
maximal eigenvalue of(B̂1

FD,0)
−1B̂0 approximates the maximal eigenvalue of(Â1

FD,0)
−1 Â0.

In the case of the spectral scheme we obtain complex eigenvalues and the minimal
eigenvalue is less than one. The maximal eigenvalue is close to the maximal eigenvalue of
(Âsp

FD,0)
−1 Â0.

6. NUMERICAL RESULTS FOR THE STOKES EQUATIONS

6.1. The Steady Case

First, we give an example for the solution of (2.1)–(2.3). Let

x̄ = 1

2
(x + 1), ȳ = 1

2
(y+ 1).

Becausex, y ∈ [−1, 1] we know thatx̄, ȳ ∈ [0, 1].
Let us define

u1(x, y) = r (x̄)s(ȳ), u2(x, y) = −s(x̄)r (ȳ),

p(x, y) = exp(x̄ + ȳ− 1),

where

r (x̄) = x̄2(1− x̄)2,

s(ȳ) = 2ȳ(1− ȳ)2− 2ȳ2(1− ȳ).

Hence the functionsu1, u2 satisfy

u1(x, y) = u2(x, y) = 0 for (x, y) ∈ ∂Ä.

Furthermore,r ands are choosen such thatr ′ = s, which leads us to

∂

∂x
u1(x, y)+ ∂

∂y
u2(x, y) = 1

2
(r ′(x̄)s(ȳ)− s(x̄)r ′(ȳ)) = 0.

Therefore, the velocity field is divergence-free. By substitution ofu1, u2 in (2.1) we obtain
the right-hand sidef .

Let vN
1 , v

N
2 , andqN be the approximations ofu1, u2, and p. Then we can calculate the

absolute errors

ERU1= ∥∥u1− vN
1

∥∥
2, ERU2= ∥∥u2− vN

2

∥∥
2, ERP= ‖p− qN‖2,
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TABLE IX

Results for the Velocity and the Pseudo–Laplacian

N ERU1= ERU2 ERP

4 4.686· 10−6 2.355· 10−2

8 3.678· 10−12 3.807· 10−3

12 3.555· 10−12 1.204· 10−3

where

‖v‖2 =
[

N∑
i, j=0

v(xi , yj )
2

] 1
2
/

N, ‖q‖2 =
[

N∑
i, j=1

p(zi , w j )
2

] 1
2
/

N

denote the discreteL2-norms inÄ.
We calculate the above errors by taking sufficient time steps until the stopping criterion,

‖un − un+1‖2 ≤ 1.0 · 10−14,

is satisfied.
Table IX presents the results for the pseudo–Laplacian by using order-one methods for

the time discretization and the extrapolation ofp. Obviously, the accuracy obtained inp
is much worse than that ofu. This is because for the approximation of the pressure we
use polynomials of one degree less than that for the velocity by the use of staggered grids.
This means that more weight is put into approximating the velocity (compared to [12]). In
particular the larger test space guarantees that (2.2) is satisfied more accurately.

6.2. The Unsteady Case

If vn+1 is the exact velocity andqn+1 the exact pressure at the time leveltn+1, we obtain
from (2.9) that

β0

4t
(un+1− vn+1+ vn+1− ũn+1) = ∇(qn+1− pn+1+ p̄n+1

l − qn+1
)

in Ä.

Since the intermediate velocitỹun+1 is determined by ak-th order time differentiation
scheme and the extrapolated pressure by al -th order scheme we observe that the error
function

un+1− vn+1+ 4t

β0
∇(pn+1− qn+1) (6.1)

behaves as

O(4tk)+ O(4t l+1).

By takingr = k = l + 1 we finally find out that (6.1) behaves asO(4tr ) for 4t → 0.
By combining a backward Euler scheme of second order with a first-order extrapolation

we obtain a method which is completely of second order in time. This theoretical result
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TABLE X

Results for the Velocity and the Pseudo–Laplacian forN = 12 andr = 2

4t Eu1 Ratio Eu2 Ratio Ep Ratio

1
32

9.818· 10−4 1.053· 10−3 5.831· 10−2

1
64

2.513· 10−4 3.907 2.696· 10−4 3.906 2.666· 10−2 2.187
1

128
6.333· 10−5 3.968 6.796· 10−5 3.967 9.617· 10−3 2.564

1
256

1.584· 10−5 3.998 1.700· 10−5 3.998 4.800· 10−3 2.004

is also confirmed by numerical calculations. For that purpose we consider the following
example on [0, 1]2. Let

u1(x, y, t) = z(t)r (x̄)s(ȳ),

u2(x, y, t) = −z(t)s(x̄)r (ȳ),

p(x, y, t) = w(t) exp(x̄ + ȳ− 1),

where

r (x̄) = sin(π x̄)2,

s(x̄) = r ′(x̄),

z(t) = (2π − 1+ sin(2π t)) · 1

2π
,

w(t) = cos(2π t).

We calculate the mean quadratic errors:

Eu1 = max{ERU1 : t ≥ 0},
Eu2 = max{ERU2 : t ≥ 0},
Ep = max{ERP: t ≥ 0}.

We compute these errors after the effect of initialization has disappeared. Then the errors
become periodic in time because our functionsz andw′ are periodic. The numerical results
for the caseN = 12 and4t = 1

32,
1
64,

1
128, and 1

256 are given in Table X forr = 2.
Forr = 3 this method does not converge because of the use of staggered grids. Therefore,

we give also the numerical results for the casek = 1 andl = 1 (see Table XI).

TABLE XI

Results for the Pseudo–Laplacian forN = 12 andk = l = 1

4t Eu1 Ratio Eu2 Ratio Ep Ratio

1
32

6.477· 10−3 6.658· 10−3 7.024· 10−2

1
64

3.268· 10−3 1.982 3.313· 10−3 2.010 3.111· 10−2 2.258
1

128
1.647· 10−3 1.984 1.659· 10−3 1.997 1.195· 10−2 2.603

1
256

8.281· 10−4 1.989 8.310· 10−4 1.996 4.873· 10−3 2.454
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7. THE NAVIER–STOKES EQUATIONS

Now we consider the unsteady Navier–Stokes equations for incompressible flows in
velocity–pressure formulation:

∂u

∂t
− 1

Re
∇2u+∇p+ (u · ∇)u = f in Ä= ]−1, 1[2, (7.1)

∇ · u = 0 inÄ= ]−1, 1[2, (7.2)

u = h on ∂Ä, (7.3)

u = u0 for t = 0, in Ä= ]−1, 1[2. (7.4)

As in (2.7)–(2.11) we obtain

Ln
t,2ũn+1− 1

Re
∇2ũn+1+ 2 · (un · ∇)un− (un−1 · ∇)un−1+∇ p̄n+1

1 = f n+1 in Ä, (7.5)

ũn+1
|∂Ä = hn+1, (7.6)

and

3

2
· u

n+1− ũn+1

4t
+∇(pn+1− p̄n+1

1

) = 0 inÄ, (7.7)

∇ · un+1 = 0 inÄ, (7.8)

un+1 · ν|∂Ä = hn+1 · ν. (7.9)

For the approximation of the convective term we use the Adams–Bashforth scheme of
second order. We consider the following example:

u1(x, y, t) = cos(γ t) · sin

(
πx

2

)
· cos

(
πy

2

)
,

u2(x, y, t) = − cos(γ t) · cos

(
πx

2

)
· sin

(
πy

2

)
,

p(x, y, t) = 1

4
· cos2(γ t)(cos(πx)+ cos(πy))+ 10(x + y) · cos(γ t).

Obviously,u1 andu2 satisfy∇ · u = 0:

∂u1

∂x
+ ∂u2

∂y
= π

2
· cos(γ t) · cos

(
πx

2

)
· cos

(
πy

2

)
− π

2
· cos(γ t) · cos

(
πx

2

)
· cos

(
πy

2

)
= 0.

The source termf is defined by (7.1),h by (7.3), and the initial conditionu0 by (7.4).
The Reynolds number is Re= 100 and to start the time-integration the fields at levels
−24t,−4t , and 0 are equal to the exact solution.

7.1. The Steady Case

First we consider the steady case; i.e.,γ = 0. We compute the error

Iφ = ‖φN − φ‖I ,
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TABLE XII

Results for the Navier–Stokes Equations

N Iu1 Iu2 I p

8 2.856· 10−7 2.720· 10−7 6.350· 10−6

12 5.840· 10−12 4.780· 10−12 1.075· 10−9

16 1.087· 10−14 1.172· 10−14 2.105· 10−13

i.e., the discrete error at the inner collocation points, where

‖φ‖2I =
1

(N − 1)2
·

N−1∑
i, j=1

φ(xi , yj )
2.

Table XII contains the results for4t = 0.01 andN = 8, 12, and 16.
From Table XIII we can see that we achieved a second-order method in time foru.

7.2. The Unsteady Case

For the unsteady case we chooseγ = 5,4t = 0.001, andN = 16. Figure 5 demon-
strates the temporal evolution of the errorsEu1 andEp. We observe no amplification of the
oscillatiing errors in time, expressing the stability of the numerical solution.

7.3 The Regularized Cavity Flow

Finally, the regularized cavity flow in the domain 0≤ x̄, ȳ ≤ 1 is computed. On the edge
ȳ = 1 the fluid velocity is

u1(x̄, 1) = −16x̄2(1− x̄)2,

u2(x̄, 1) = 0,

whereu1 = u2 = 0 on the other three edges. The source termf is identical to zero.
To compare our results with the results in [4] we have to determine the streamfunction

ψ and the vorticityω. There we have to compute in each time step

ωn+1 = ∂un+1
2

∂ x̄
− ∂un+1

1

∂ ȳ
.

TABLE XIII

Results for the Navier–Stokes Equations forN = 12 andr = 2,γ = 5

4t Iu1 Ratio Iu2 Ratio I p Ratio

1
32

1.6021· 10−2 1.6021· 10−2 5.520· 10−2

1
64

3.4444· 10−3 4.6513 3.4444· 10−3 4.6513 1.2652· 10−2 4.3629
1

128
8.2226· 10−4 4.1889 8.2245· 10−4 4.1880 3.0681· 10−3 4.1237

1
256

2.0133· 10−4 4.0841 2.0120· 10−4 4.0877 7.6495· 10−4 4.0108
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FIG. 5. Temporal evolution of the errorsEu1 andEp for 4t = 0.001 andN = 16.

We consider that the steady case is reached when

maxi, j

∣∣ωn+1
i, j − ωn

i, j

∣∣
4t ·maxi, j

∣∣ωn+1
i, j

∣∣ ≤ 2 · 10−6. (7.10)

Then we calculate the streamfunctionψ by

∇2ψ = −ω in Ä= ]0, 1[2. (7.11)

Table XIV displays the maximal time step4tc for N = 16, 20, and 24 for Reynolds
numbers Re= 100 and 400. Table XV contains the maximal value of|ψ | on the inner
collocation pointsM1 · M B

1 represents the results in [4]. Table XVI shows the corresponding
results for|ω| on the collocation pointsM2 on the sidēy = 1.

Note thatM2 does not give a precise account of the maximum of|ω| because of the strong
variation of the vorticity on the edgēy = 1 and the uneven spacing of the collocation points.
But since the approximation on̄y = 1 is done by a polynomial defined at everyx̄ ∈ [0, 1]
we have divided the space into 201 equally spaced points on this edge. The corresponding
values of|ω| are presented in Table XVII (denotedM3).

TABLE XIV

Critical Time Step4tc (with an error of ±10−3)

N Re= 100 Re= 400

16 0.303 0.104
20 0.250 0.074
24 0.234 0.056



STAGGERED GRIDS FOR NAVIER–STOKES 153

TABLE XV

Maximal Value of |ψ|a

Re= 100 Re= 400

N MB
1 M1 M B

1 M1

16 8.3160× 10−2 8.3160× 10−2 8.5777× 10−2 8.5452× 10−2

(0.40− 0.78) (0.40− 0.78) (0.40− 0.60) (0.40− 0.60)

20 8.2694× 10−2 8.2695× 10−2 8.5192× 10−2 8.5213× 10−2

(0.42− 0.73) (0.42− 0.73) (0.42− 0.58) (0.42− 0.58)

24 8.3315× 10−2 8.3315× 10−2 8.5716× 10−2 8.5715× 10−2

(0.37− 0.75) (0.37− 0.75) (0.43− 0.63) (0.43− 0.63)

32 8.3402× 10−2 8.3402× 10−2 8.5480× 10−2 8.4007× 10−2

(0.40− 0.74) (0.40− 0.74) (0.40− 0.60) (0.40− 0.65)

a The coordinates are given in parentheses.

TABLE XVI

Maximal Value of |ω|a

Re= 100 Re= 400

N MB
2 M2 M B

2 M2

16 13.3467 13.3442 24.7759 24.6541
(0.60) (0.60) (0.60) (0.60)

20 13.1759 13.1762 24.6268 24.6243
(0.65) (0.65) (0.65) (0.65)

24 13.4226 13.4228 24.9157 24.9143
(0.63) (0.63) (0.63) (0.63)

32 13.3423 13.3422 24.7845 24.9783
(0.60) (0.60) (0.65) (0.65)

a The coordinates are given in parentheses.

TABLE XVII

Maximal Value of |ω|a

Re= 100 Re= 400

N MB
3 M3 M B

3 M3

16 13.4476 13.4434 25.1604 25.0222
(0.620) (0.620) (0.625) (0.625)

20 13.4441 13.4441 24.9273 24.9241
(0.620) (0.620) (0.630) (0.630)

24 13.4446 13.4565 24.9148 24.9010
(0.610) (0.620) (0.630) (0.625)

32 13.4448 13.4430 24.9109 25.1123
(0.620) (0.620) (0.630) (0.625)

a The coordinates are given in parentheses.
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8. CONCLUSIONS

We have presented and discussed the splitting for the unsteady Stokes equations whereas
we decoupled the system into Helmholtz equations for the velocity and an equation with the
pseudo-Laplacian for the pressure. The spatial discretization is performed by a IPN × IPN−1

Chebyshev collocation-type method by using staggered grids. Then we have extended our
splitting scheme to the Navier–Stokes equations. Our discretization is free of spurious
modes and we have found a good preconditioner for the ill-conditioned pseudo-Laplacian.
While we have lost some accuracy in the pressure, good results for the approximation of
the velocity are achieved.
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